1,235 research outputs found

    Editorial perspective: Leaving the baby in the bathwater in neurodevelopmental research

    Get PDF
    Neurodevelopmental conditions are characterised by differences in the way children interact with the people and environments around them. Despite extensive investigation, attempts to uncover the brain mechanisms that underpin neurodevelopmental conditions have yet to yield any translatable insights. We contend that one key reason is that psychologists and cognitive neuroscientists study brain function by taking children away from their environment, into a controlled lab setting. Here, we discuss recent research that has aimed to take a different approach, moving away from experimental control through isolation and stimulus manipulation, and towards approaches that embrace the measurement and targeted interrogation of naturalistic, user-defined and complex, multivariate datasets. We review three worked examples (of stress processing, early activity level in ADHD and social brain development in autism) to illustrate how these new approaches might lead to new conceptual and translatable insights into neurodevelopment

    How orchids concentrate? The relationship between physiological stress reactivity and cognitive performance during infancy and early childhood

    Get PDF
    The Autonomic Nervous System (ANS) is involved both in higher-order cognition such as attention and learning, and in responding to unexpected, threatening events. Increased ANS reactivity may confer both superior short-term cognitive performance, and heightened long-term susceptibility to adverse events. Here, we evaluate this hypothesis within the Differential Susceptibility Theory (DST) framework. We hypothesise that individuals with increased reactivity may show heightened biological sensitivity to context, conferring both positive (development-enhancing) effects (superior attention and learning) and negative (risk-promoting) effects (increased sensitivity to unsupportive environments). First, we examine how ANS reactivity relates to early cognitive performance. We hypothesise that increased phasic ANS reactivity, observed at lower tonic (pre-stimulus) ANS activity, is associated with better attention and learning. We conclude that the evidence is largely in support. Second we discuss whether ANS reactivity to ‘positive’, attention-eliciting and to ‘negative’, aversive stimuli is a one-dimensional construct; and evaluate evidence for how the real-world environment influences physiological stress over short and long time-frames. We identify three areas where the evidence is currently inconclusive

    Oscillatory entrainment to our early social or physical environment and the emergence of volitional control

    Get PDF
    An individual’s early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment

    14 challenges for conducting social neuroscience and longitudinal EEG research with infants

    Get PDF
    The use of electroencephalography (EEG) to study infant brain development is a growing trend. In addition to classical longitudinal designs that study the development of the neural, cognitive and behavioural function, new areas of EEG application are emerging, such as novel social neuroscience paradigms using dual infant-adult EEG recordings. However, most of the experimental designs, analysis methods, as well as EEG hardware were originally developed for single-person adult research. When applied to the study of infant development, adult-based solutions often pose unique problems that may go unrecognised. Here, we identify 14 challenges that infant EEG researchers may encounter when designing new experiments, collecting data, and conducting data analysis. Challenges related to the experimental design are: (1) small sample size and data attrition, and (2) varying arousal in younger infants. Challenges related to data acquisition are: (3) determining the optimal location for reference and ground electrodes, (4) control of impedance when testing with the high-density sponge electrode nets, (5) poor fit of standard EEG caps to the varying infant head shapes, and (6) ensuring a high degree of temporal synchronisation between amplifiers and recording devices during dual-EEG acquisition. Challenges related to the analysis of longitudinal and social neuroscience datasets are: (7) developmental changes in head anatomy, (8) prevalence and diversity of infant myogenic artefacts, (9) a lack of stereotypical topography of eye movements needed for the ICA-based data cleaning, (10) and relatively high inter-individual variability of EEG responses in younger cohorts. Additional challenges for the analysis of dual EEG data are: (11) developmental shifts in canonical EEG rhythms and difficulties in differentiating true inter-personal synchrony from spurious synchrony due to (12) common intrinsic properties of the signal and (13) shared external perturbation. Finally, (14) there is a lack of test-retest reliability studies of infant EEG. We describe each of these challenges and suggest possible solutions. While we focus specifically on the social neuroscience and longitudinal research, many of the issues we raise are relevant for all fields of infant EEG research

    Burnout Rates in Undergraduate Athletic Training Students Compared to the Burnout Rate of Certified Athletic Trainers: A Comparative Study

    Get PDF
    Burnout was first described in 1974. Since then, the condition has been researched and studied numerous times. The healthcare field has experienced this condition at a very high rate and Athletic Training, as a profession, has been affected. Burnout has become prevalent in the healthcare field due to highly stressful situations, heavy workload, and emotionally draining work environments. The profession of Athletic Training has been significantly affected by this condition and many Athletic Trainers (AT) experience burnout over the course of a calendar year. Seemingly every AT has been affected by burnout personally, known a colleague who has struggled with burnout, or even succumbed to burnout and changed professions. This far reaching condition may be affecting undergraduate students in Athletic Training Education Programs (ATEP); but little is known about the degree to which students are affected due to lack of research on this segment of the population. Therefore, the purpose of this study was to assess the level of burnout in undergraduate AT students (ATS) compared to the level of burnout in Certified Athletic Trainers (ATC). ATS and ATCs were surveyed using a Maslach Burnout Inventory (MBI) and basic demographic items to assess level of burnout and to compare the two groups to determine possible correlation. The results of this study show that undergraduate athletic training students are affected at the same rate as the Certified Athletic Trainers who have experience in the field, years of life experience, stronger coping mechanisms, stronger social support, and/or organization support. This study determined that ATS and ATC have a comparable level of burnout

    Developmental Psychology: How Social Context Influences Infants’ Attention

    Get PDF
    A recent study shows that changes in the focus of a social partner’s attention associate, on a second-by-second scale, with changes in how much attention infants pay to objects

    Sing to me, baby: Infants show neural tracking and rhythmic movements to live and dynamic maternal singing

    Get PDF
    Infant-directed singing has unique acoustic characteristics that may allow even very young infants to respond to the rhythms carried through the caregiver’s voice. The goal of this study was to examine neural and movement responses to live and dynamic maternal singing in 7-month-old infants and their relation to linguistic development. In total, 60 mother-infant dyads were observed during two singing conditions (playsong and lullaby). In Study 1 (n = 30), we measured infant EEG and used an encoding approach utilizing ridge regressions to measure neural tracking. In Study 2 (n =40), we coded infant rhythmic movements. In both studies, we assessed children’s vocabulary when they were 20 months old. In Study 1, we found above-threshold neural tracking of maternal singing, with superior tracking of lullabies than playsongs. We also found that the acoustic features of infant-directed singing modulated tracking. In Study 2, infants showed more rhythmic movement to playsongs than lullabies. Importantly, neural coordination (Study 1) and rhythmic movement (Study 2) to playsongs were positively related to infants’ expressive vocabulary at 20 months. These results highlight the importance of infants’ brain and movement coordination to their caregiver’s musical presentations, potentially as a function of musical variability

    In Infancy, It’s the Extremes of Arousal That Are ‘Sticky’: Naturalistic Data Challenge Purely Homeostatic Approaches to Studying Self-Regulation

    Get PDF
    Most theoretical models of arousal/regulatory function emphasise the maintenance of homeostasis; consistent with this, most previous research into arousal has concentrated on examining individuals’ recovery following the administration of experimentally administered stressors. Here, we take a different approach: we recorded day-long spontaneous fluctuations in autonomic arousal (indexed via electrocardiogram, heart rate variability and actigraphy) in a cohort of 82 typically developing 12-month-old infants while they were at home and awake. Based on the aforementioned models, we hypothesised that extreme high or low arousal states might be more short-lived than intermediate arousal states. Our results suggested that, contrary to this, both low- and high-arousal states were more persistent than intermediate arousal states. The same pattern was present when the data were viewed over multiple epoch sizes from 1 second to 5 minutes; over 10-15-minute time-scales, high-arousal states were more persistent than low- and intermediate states. One possible explanation for these findings is that extreme arousal states have intrinsically greater hysteresis; another is that, through ‘metastatic’ processes, small initial increases and decreases in arousal can become progressively amplified over time. Rather than exclusively studying recovery, we argue that future research into self regulation during early childhood should instead examine the mechanisms through which some states can be maintained, or even amplified, over time

    Toward the Understanding of Topographical and Spectral Signatures of Infant Movement Artifacts in Naturalistic EEG

    Get PDF
    Electroencephalography (EEG) is perhaps the most widely used brain-imaging technique for pediatric populations. However, EEG signals are prone to distortion by motion. Compared to adults, infants’ motion is both more frequent and less stereotypical yet motion effects on the infant EEG signal are largely undocumented. Here, we present a systematic assessment of naturalistic motion effects on the infant EEG signal. EEG recordings were performed with 14 infants (12 analyzed) who passively watched movies whilst spontaneously producing periods of bodily movement and rest. Each infant produced an average of 38.3 s (SD = 14.7 s) of rest and 18.8 s (SD = 17.9 s) of single motion segments for the final analysis. Five types of infant motions were analyzed: Jaw movements, and Limb movements of the Hand, Arm, Foot, and Leg. Significant movement-related distortions of the EEG signal were detected using cluster-based permutation analysis. This analysis revealed that, relative to resting state, infants’ Jaw and Arm movements produced significant increases in beta (∼15 Hz) power, particularly over peripheral sites. Jaw movements produced more anteriorly located effects than Arm movements, which were most pronounced over posterior parietal and occipital sites. The cluster analysis also revealed trends toward decreased power in the theta and alpha bands observed over central topographies for all motion types. However, given the very limited quantity of infant data in this study, caution is recommended in interpreting these findings before subsequent replications are conducted. Nonetheless, this work is an important first step to inform future development of methods for addressing EEG motion-related artifacts. This work also supports wider use of naturalistic paradigms in social and developmental neuroscience

    Interpersonal Neural Entrainment during Early Social Interaction

    Get PDF
    Currently, we understand much about how children’s brains attend to and learn from information presented while they are alone, viewing a screen – but less about how interpersonal social influences are substantiated in the brain. Here, we consider research that examines how social behaviors affect not one, but both partners in a dyad. We review studies that measured interpersonal neural entrainment during early social interaction, considering two ways of measuring entrainment: concurrent entrainment (e.g., ‘when A is high, B is high’ – also known as synchrony) and sequential entrainment (‘changes in A forward-predict changes in B’). We discuss possible causes of interpersonal neural entrainment, and consider whether it is merely an epiphenomenon, or whether it plays an independent, mechanistic role in early attention and learning
    • …
    corecore